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SUMMARY

Planning allows actions to be structured in pursuit of
a future goal. However, in natural environments,
planning over multiple possible future states incurs
prohibitive computational costs. To represent plans
efficiently, states can be clustered hierarchically
into ‘‘contexts’’. For example, representing a journey
through a subway network as a succession of indi-
vidual states (stations) is more costly than encoding
a sequence of contexts (lines) and context switches
(line changes). Here, using functional brain imaging,
we asked humans to perform a planning task in a vir-
tual subway network. Behavioral analyses revealed
that humans executed a hierarchically organized
plan. Brain activity in the dorsomedial prefrontal cor-
tex and premotor cortex scaled with the cost of hier-
archical plan representation and unique neural sig-
nals in these regions signaled contexts and context
switches. These results suggest that humans repre-
sent hierarchical plans using a network of caudal pre-
frontal structures.

INTRODUCTION

By forming and executing plans, humans can engage in complex

behaviors such as preparing a cup of coffee or organizing a trip

to London. When asked to perform multistep tasks such as

these, patients with lesions to the prefrontal cortex (PFC) often

exhibit disordered action sequences that fail to achieve the

specified goal (Owen et al., 1990; Shallice, 1982; Shallice and

Burgess, 1991), and hippocampal patients have difficulty imag-

ining the future states entailed (Schacter et al., 2012). Moreover,

functional neuroimaging has confirmed the involvement of hu-

man prefrontal and limbic structures in forming and executing

plans, particularly in spatial environments (Howard et al., 2014;

Schacter and Addis, 2007; Unterrainer and Owen, 2006). Never-

theless, linking these macroscopic neural findings to the under-

lying computational mechanisms that subserve planning re-

mains an open challenge for psychologists and neuroscientists.

Planning is often described as mental exploration of a network

of interlinked, internally represented episodes (or ‘‘states’’). Ac-
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cording to one conception, future states belong to a decision

‘‘tree’’ in which each node is a decision point and each branch

a possible response. Plans are representations of trajectories

through the tree, selected on the basis of their long-term cumu-

lative outcome (Daw et al., 2005, 2011; Huys et al., 2012; Russell

and Norvig, 1995). Computer-based algorithms have success-

fully exploited this strategy to achieve expert levels of perfor-

mance in board games such as chess and weiqi (Go) (Silver

et al., 2016). However, because the number of possible action

sequences grows exponentially with each additional step in

the planning horizon, this approach is computationally intrac-

table in many natural environments (Gershman et al., 2015).

For example, a visitor would probably not plan a trip to London

by envisaging every unique interim step en route to the destina-

tion, but might rather imagine attaining only a subset of key

states, such as reaching an airport or other transport hub.

In machine learning and computational neuroscience, it is

widely recognized that the computational demand associated

with planning can be reduced by exploiting hierarchical structure

in the environment, with states clustered into larger ‘‘contexts’’

(Badre et al., 2010; Botvinick et al., 2009; Koechlin and Jubault,

2006; Sutton and Barto, 1998). To understand how a hierarchical

representation may alleviate the computational burden of plan-

ning, consider a metropolitan rail (subway) network, in which

stations (i.e., states, e.g., King’s Cross and Oxford Circus) are

organized into lines (i.e., contexts, e.g., the Victoria Line; see Fig-

ure 1A). Unlike planning in a ‘‘flat’’ (non-hierarchical) environ-

ment, plans formed in a hierarchical environment need not

specify each and every state linking the current position and

goal. Rather, it is sufficient to identify the current context and

the (termination) conditions that allow the next context to be

reached; for example, when planning a journey from Marble

Arch to King’s Cross on the London Underground, one should

‘‘take the Central Line to Oxford Circus, and from there, switch

to the Victoria Line’’. Humans seem to represent locations hier-

archically in spatial memory: for example, we have a bias to

judge cities belonging to a common region (e.g., Nevada) as

geographically closer than those crossing a region boundary

(Newcombe and Liben, 1982; Stevens and Coupe, 1978).

Regionalization may also influence navigational strategy: during

wayfinding, humans prefer routes that permit a context bound-

ary to be crossed earlier rather than later (Wiener and Mallot,

2003). In machine learning, states that offer privileged access

to a new context (such as Oxford Circus allowing access to the

Victoria Line) are considered ‘‘bottlenecks,’’ and hierarchical
, May 18, 2016 ª 2016 The Authors. Published by Elsevier Inc. 893
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Figure 1. Task and Design

(A) Schematic representation of planning under a

flat (left) and hierarchical (right) policy. Each node

from left (start state, shown by the robot) to right

shows a possible state (i.e., station) that could be

visited. The flag indicates the destination station. A

hierarchical policy allows the agent to ‘‘chunk’’ the

maze into contexts (here, a red line and a blue line).

This in turn reduces the cost of planning and plan

representation.

(B) The subway map that participants navigated.

Themapwas rotated and the line colors and station

names were shuffled between participants. Par-

ticipants only saw the map during training.

(C) A schematic depiction of the sequence of

events (trials) that occurred on an example journey.

The names at the top and bottom of the screen refer

to the current and destination stations, respec-

tively. The responses (arrows) and lines (colored

dots) were not shown to participants. Timings (in

seconds) for the various events are shown below.

(D) Examples of how the various distances were

calculated for an example map: DS (stations to

goal), DL (lines to goal), DX (exchange stations to

goal), and DU (U-turn cost). The numbers and blue-

red colormap show the distance in eachmetric that

was used to estimate the cost of planning. The

robot shows the start point, and the flag shows the

destination station.
learning models successfully predict that visiting these should

elicit unique patterns of behavior and neural activity (Holroyd

and Yeung, 2012; Ribas-Fernandes et al., 2011; Solway et al.,

2014).

Here, thus, we taught participants to navigate a novel subway

network in which stations (states; e.g., Mandela and Budapest)

were organized hierarchically into lines (contexts) defined by

their color (Figure 1B). Following training, participants were

asked to complete journeys within the network without viewing

the map, pressing keys to move from one station to another.

We analyzed behavior and fMRI data in order to determine
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whether humans represented plans in a hi-

erarchical fashion (over lines or contexts)

or a flat fashion (over stations or states).

On the neural level, an extensive literature

has implicated both the medial and lateral

PFC in planning on multistep decision

tasks such as the Tower of London (Unter-

rainer and Owen, 2006), but the relative

contribution of these different regions re-

mains unclear. Some studies have found

that the BOLD signal in dorsolateral PFC

scales with the number of moves required

to attain goal state (van den Heuvel et al.,

2003; Wagner et al., 2006), but neural

structures encoding hierarchical plan

complexity have yet to be identified. One

theoretical perspective has suggested

that the dorsomedial PFC (dmPFC) may

play a particular role in representing
contextual information for future behavior (Holroyd and Yeung,

2012). During passive observation of trajectories through a struc-

tured environment, the dmPFC is less active at bottleneck states

(Schapiro et al., 2013), but by contrast, a more caudal medial

prefrontal region shows a positive ‘‘pseudo-reward’’ signal

when a subgoal is attained (Ribas-Fernandes et al., 2011). It

thus remains unclear how the medial and lateral PFC might

contribute to hierarchical planning.

To preview our findings, we identified two frontal cortical re-

gions that encoded the cost of representing a hierarchical

plan: a bilateral anterior premotor region and the dmPFC. These



regions also became differentially active at bottleneck states

(‘‘exchange’’ stations, where participants could switch from

one context to another). Using multivariate analyses, we found

that the dmPFC additionally encoded or monitored the current

context (i.e., the subway line that was currently being taken), a

key quantity that is required for executing a hierarchical plan.

By contrast, the rostromedial PFC and hippocampus encoded

the proximity to a goal state. Together, these findings suggest

that during planning, humans encode the subway network and

formulate plans in a hierarchical fashion.

RESULTS

Task Summary
The task is depicted in Figure 1C. Each journey began at a

pseudo-randomly chosen station (see Experimental Proce-

dures). On each trial, the names of the destination and current

stations were shown, and participants pressed one of four but-

tons (north, south, east, or west) to move to an adjacent sta-

tion, which was then shown on the next trial. Their goal was

to navigate through the subway map from the start station to

the destination station (these successive trials comprising a

‘‘journey’’). During an initial training session, lines were associ-

ated with colors (red, green, yellow, and blue), but at scanning,

all color information was removed. Successful journeys were

rewarded with financial incentives, but there was a small, but

constant, probability that journeys were ‘‘cancelled’’ on each

trial and the reward was unavailable, motivating participants

to make journeys in the shortest possible number of trials. Par-

ticipants carried out 88.8 ± 2 journeys in total, each consisting

of an average of 5.5 ± 0.06 trials. Of these, 78.3% were per-

formed ‘‘optimally’’ (i.e., when all responses decreased the dis-

tance to goal in number of stations). Of the remainder, 15.2%

contained at least one action that led participants further

away from the goal; these responses were made more slowly

(t19 = 7.56, p < 0.000001). Additionally, 9.0% of journeys

included at least one missing response (when subjects failed

to respond on time and remained in the same station as in

the previous trial).

Behavior: The Cost of Plan Representation
The complexity (or description length) of representing a flat (non-

hierarchical) plan is proportional to the number of remaining

states (here, stations) that must be traversed to reach the goal

(here, destination station). By contrast, in a hierarchical plan,

this cost scales with the remaining number of contexts that

must be traversed for the goal to be attained. We thus began

by definingmeasures of plan complexity thatmight be computed

by participants under flat and hierarchical policies. First, we

calculated, on each trial, the number of steps (stations) that re-

mained to be traversed before the goal was reached, assuming

a shortest path trajectory (DS). This represents plan complexity

under a flat policy (see Figure 1D, leftmost). Next, we calculated

the number of contexts that remained to be traversed before the

goal was reached. Thus, if on the current trial there were only one

change of context that would be required to reach the goal, this

valuewould be 1; beyond that context switch, the valuewould be

0. This quantity DL indexes the cost of a hierarchical policy (Fig-
ure 1D, center left). Then, as a control, we computed the distance

to goal in number of exchange stations to be traversed. By

design, on many journeys, the shortest path involved passing

through an exchange station without switching context (Fig-

ure 1D, center right). This measure, which we call DX, was thus

decorrelated from DL (for details of the correlation among dis-

tance measures, see Table S3). Finally, we computed another

cost, which represented the number of steps that had to be

taken away from the goal (in cityblock space) in order to reach

it by the shortest path. Thus, this measure, which we call the

U-turn cost (or DU), was high for paths that required ‘‘doubling

back’’ (Figure 1D, rightmost).

We then used linear regression to ask whether (log) response

times (RTs) during navigation were sensitive to the complexity of

the plan as indexed byDS,DL,DX, andDU. Critically, this analysis

yielded significant positive coefficients for number of lines to

goal (DL: t19 = 3.46, p = 0.003) and for the U-turn cost (DU:

t19 = 4.26, p < 0.001; see Figure 2A). When these predictors

competed for variance within a single regression, however, the

number of stations to goal failed to predict RTs (DS: t19 = 1.26,

p = 0.223), as did the number of exchange stations (DX: t19 =

�0.49, p = 0.628). This finding suggests that the main costs of

representing the plan were contextual or structural aspects of

the subway map, rather than the number of unique steps

required to reach the destination station. This supports the

view that plans are formed and executed in a hierarchical

fashion.

We defined stations as ‘‘regular’’ (i.e., within a single line; e.g.,

Madrid in Figure 1B) and exchange (i.e., bottlenecks, occurring

at the intersection between lines, e.g., Clinton). Moreover, re-

sponses were classified as either stay (i.e., travel in the same di-

rection as the previous step) or switch (i.e., change the direction

of travel). These factors were orthogonal in our paradigm,

because regular stations sometimes required a direction switch,

as when a single line turned a corner (e.g., Kathmandu in Fig-

ure 1B), but participants could also pass through exchange sta-

tions without switching response (e.g., when passing through

Moscow en route from Winfrey to Bern). This feature of our

design thus allowed us to further include, in the above regres-

sion, separate binary predictors encoding station type (ex-

change versus regular) and response type (switch versus stay).

We observed a main effect of station type (exchange > regular;

t19 = 3.40, p = 0.003) and of direction (switch > stay; t19 = 7.92,

p < 0.001). The interaction between station type and response

type was not significant (t19 = 1.05, p = 0.309). Mean RTs in

each condition are plotted in Figure S1.

Neural Cost of Plan Representation
Next, we sought to identify in the brain imaging data the neural

costs of representing flat or hierarchical plans. In this analysis

and all that follow, all reported results survive correction for

multiple comparisons using a false discovery rate (FDR) with

an alpha of p < 0.05, unless otherwise noted. We built a design

matrix (GLM1) with regressors encoding the various indices

of distance to goal introduced above (DS, DL, DX, and DU; Fig-

ure 2C). Examples of how these distances were computed

are shown in Figure 1D. Regressing this design matrix against

BOLD data, we found that a dmPFC (BA8/32) responded
Neuron 90, 893–903, May 18, 2016 895
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Figure 2. Behavioral andNeural Costs of Flat

and Hierarchical Planning

(A) Regression coefficients (mean ± SEM across

participants) showing the slope of the pre-

dictive relationship between experimental variables

(including distance estimates) and log RTs.

(B) Parametric responses (mean ± SEM) to DS and

DL in the PMC and rlPFC. There is a significant

condition 3 region interaction. The rlPFC ROI is

shown on the right.

(C) Encoding of the four plan complexity measures

(GLM1) in the lateral (coronal view; upper) and

medial (sagittal view; lower) frontal cortices,

rendered onto a template brain, thresholded at

p < 0.001 uncorrected.

(D) Correlation with proximity to goal (GLM1) in the

vmPFC.

(E) Correlation with proximity to goal (GLM2) in the

hippocampus. The activations are shown that

exceed p < 0.001, uncorrected.

(F) Correlation between parameter estimates link-

ing log(RT) to plan complexity in units of station

(left) and lines (right), with beta values encoding

the corresponding distance measure in the PMC

(upper) and dmPFC (lower). The dots correspond

to individual subjects. The lines are to best linear

fits for significant (red) and non-significant (gray)

correlations, respectively.

The significant regions within a circle survived

multiple comparisons correction.
positively to the cost of plan representation in units of both lines

(peak:�6, 8, 58; t19 = 5.21, p < 0.0001) and the U-turn cost (peak:

�2, 12, 46; t19 = 5.63, p < 0.00001). Critically, in GLM1 (when all

four regressors competed to explain variance in BOLD activity)

no dmPFC voxels were sensitive to the distance to goal in terms

of number of stations.

In the lateral PFC, we observed a similar pattern of BOLD sig-

nals in an anterior premotor region (premotor cortex) that strad-

dled BA6 and BA8, where BOLD activity scaled with DL (left

peak: �26, �8, 54; t19 = 6.58, p < 0.000001 and right peak: 30,

4, 66; t19 = 4.99, p < 0.0001) and DU (left peak: �26, 4, 54;

t19 = 6.51, p < 0.000001 and right peak: 26, 8, 46; t19 = 6.30,

p < 0.000001). Here, we also observed an effect of distance in

number of stations, DS (left peak: �22, �8, 50; t19 = 6.62, p <

0.000001 and right peak: 30, 4, 58; t19 = 6.39, p < 0.000001).

Notably, the number of exchange stations between the current

position and the goal (DX) failed to show any consistent effect

at the group level. In other words, these regions encoded the

cost of representing a plan in units that reflected the structure

of the subwaymap, over and above any encoding of the distance

to goal.
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Previous neuroimaging studies have

noted that BOLD signals in the rostrolat-

eral PFC (rlPFC) scale with the number of

moves that are required to solve the Tower

of London task (van den Heuvel et al.,

2003; Wagner et al., 2006), equivalent to

our DS measure. To permit direct compar-

ison with past studies, we created a new

GLM (GLM2) that included only DS (alongside other nuisance

quantities; see Experimental Procedures), omitting the distance

regressors in units of lines, exchange stations, or the U-turn cost.

Consistent with previous work, this analysis identified not only

the premotor cortex (PMC), but also a portion of bilateral rlPFC

(left: �42, 32, 34; t19 = 7.87, p < 0.000001 and right: 42, 40, 34;

t19 = 4.81, p < 0.0001; see Figure 2C). Plotting the average

beta parameters across the cohort for DS and DL confirmed

that the PMC, but not the rlPFC, encoded the cost of a hierarchi-

cal plan, as demonstrated by a region (PMC and rlPFC) 3 dis-

tance (DS and DL) interaction (F1,19 = 4.71, p < 0.05; see

Figure 2B).

Proximity to Goal
Consistent with previous findings (Howard et al., 2014), using

GLM1, we also observed a signal that reflected a negative corre-

lation with distance in stations to goal (DS) in the ventromedial

PFC (vmPFC, peak: 10, 48, �6; t19 = 5.80, p < 0.00001; in other

words, this region became more active the closer to the goal). In

this region, distance was encoded in units of stations only, with

no evidence for encoding of hierarchical distance (Figure 2D).
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Figure 3. BOLD Responses to Bottleneck

States

(A) BOLD signal b values (mean ± SEM) from

single-trial GLM approach in the PMC on

three regular stations preceding (leftmost

points) and following (rightmost points) a con-

text switch (green lines), an exchange station

without line change (purple lines), or an elbow

station (cyan lines). The activation at the

context switch, exchange station, or elbow are

shown with a single point in the corresponding

color. The averaged BOLD signal b in regular

stations is represented by the horizontal

dashed line.

(B) Voxels responding to the main effect of station

type (exchange > regular) in the PMC (left) and

dmPFC (right).

(C) Voxels in the amygdala responding to the interaction between station type and response.

(D) Voxels in the parietal cortex responding to the main effect of response switch. The coordinates in MNI space are provided under each slice. The significant

regions within a circle survived multiple comparisons correction.
Including only DS (GLM2) identified a number of other regions,

including the hippocampus, where BOLD signals have previ-

ously been found to scale with distance to goal during navigation

(Howard et al., 2014). In our task, the hippocampus reflected dis-

tance to goal bilaterally in the same direction as the vmPFC (Fig-

ure 2E). A full range of regions that correlated with each of these

distance estimates is reported in Tables S1 and S2.

Correlation of Neural and Behavioral Costs across the
Cohort
Next, we aimed to understand the relationship between the neural

and behavioral effects so far observed (see Figure 2F). For each

measure of planning cost (DS, DL, DX, and DU), we calculated the

correlation across the cohort of participants between its influence

on RT (regression coefficient from Figure 2A) and its influence on

BOLDsignals in (1) thePMCand (2) the dmPFC.We found the cor-

relation was significant in dmPFC for both distance in number of

stations (DS: R = 0.6, p < 0.005) and in number of line changes

(DL: R = 0.39, p < 0.05). However, neither of these correlations

was significant in the PMC (DS: R = �0.05, p = 0.57 and DL: R =

0.07, p = 0.379). No brain-behavior correlations were observed

ineither region forDXorDU. However,wedidobserve acorrelation

between the behavioral cost of DU and the encoding of DU in a

dlPFC regionshown inFigureS4 (DU:R=0.33,p<0.05one-tailed).

Neural Signals Associated with Bottleneck States
The analyses described above suggest that both dmPFC and

PMC encoded the hierarchical cost of representing a plan,

over and above any cost of plan representation computed in

units of discrete states. Next, we investigated neural signals in

these regions more closely, by plotting the activity that accom-

panied the moment in which a bottleneck state occurred, when

participants were offered the opportunity to switch from one

context to another. We once again capitalized on the factorial

design of our task, asking if there were unique neural signals

that varied with station type (exchange > regular, now including

all trials; Figure 3B). This analysis also included a regressor en-

coding DS, as well as a further nuisance predictor that signaled

whether the action chosen was optimal or not (GLM2).
We observed increases in BOLD signals associated with ex-

change stations in both the dmPFC (peak: 6, 16, 46; t19 = 4.09,

p < 0.001) and PMC, overlapping with the region described

above (left peak: �26, 8, 54; t19 = 7.24, p < 0.000001 and right

peak: 26, 12, 54; t19 = 6.56, p < 0.00001). Across the subject

cohort, the strength of this latter neural effect predicted the RT

difference between exchange and regular stations (r = 0.40,

p < 0.04), but not between switch and stay trials (p = 0.70). A

further effect of exchange > regular stations was observed in a

more anterior prefrontal region, in bilateral BA 46 (left peak:

�42, 24, 30; t19 = 4.48, p < 0.0001 and right peak: 46, 32, 22;

t19 = 5.38, p < 0.0001).

Next, we plotted how the BOLD signal varied on those regular

stations that both preceded and followed an exchange or an

elbow station. A brain region encoding the hierarchical represen-

tation of a planmight be expected to show tonically higher BOLD

signals in the trials preceding an exchange station (where the

cost of plan representation in units of lines remains high), fol-

lowed by a reduction immediately after context switch (where

the computational burden is reduced). In Figure 3A, we plot the

BOLD signal in the PMC region (extracted from the main effect

of type of station) on regular stations that precede and succeed

a context switch (green lines). An elevated BOLD signal is visible

on those trials preceding a context switch, after which it drops off

sharply (comparison between preceding and succeeding: t19 =

3.24, p < 0.003). Of note, a similar drop is not observed when

the same analysis is conducted on stations that precede or

succeed an exchange station without a context switch (purple

lines; p > 0.9) and only a modest drop follows an elbow station

(t19 = 1.87, p < 0.05, one tailed). These effects were qualified

by the interaction of type of station and type of response on

the difference of signal (preceding and following) around each

condition: F1,19 = 5.44, p < 0.04. In other words, the average

BOLD signal in PMC observed was higher on trials before than

after a context switch, consistent with a hierarchical representa-

tion of the plan. We additionally found a main effect of type of

response: F1,19 = 4.61, p < 0.05, indicating that participants

also anticipated making a response switch. Signals from the

dmPFC followed a similar pattern, although the interaction failed
Neuron 90, 893–903, May 18, 2016 897
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Figure 4. Encoding of Context inMultivariate

BOLD Signals

(A) A depiction of the predicted representational

dissimilarity matrix that was used to identify brain

regions where the similarity structure was greater

within than between contexts. The blue (and yellow)

squares represent low (high) dissimilarity, respec-

tively for independent pairs of scanner runs and

lines (x and y axis).

(B) The results of the RSA identifying voxels en-

coding context, i.e., where multivoxel pattern

dissimilarity was greater between than within

contexts (lines), identified using a searchlight

approach.

(C) Voxels where the pattern encoding the para-

metric distance to goal (in units of station) wasmore

different between than within contexts (lines).

(D) The results of the control analysis for (B)

involving shuffled stations-line assignments. An

additional control analysis was performed to assert

that the effect was not driven by line orientation (see

Figure S2). The significant regions within a circle

survived multiple comparisons correction.
to reach significance. An equivalent analysis for RTs is shown in

the Supplemental Information (Figure S3).

Neural Signals Accompanying Response Switch and
Context Switch
Behavioral data indicated that there was a unique cost incurred

when participants switched context, i.e., at exchange stations

requiring a response switch. In the fMRI data, we observed a

comparable interaction between type of station and response

switch in a cluster of voxels straddling the amygdala and puta-

men (left peak: �26, 0, �10; t19 = 4.46, p < 0.001 and right

peak: 22, 4,�14; t19 = 5.20, p < 0.0001), as well as an extrastriate

region on the lingual gyrus (peak: 26, �68, �6; t19 = 5.16, p <

0.0001), corresponding to area V4 where responses to color

are often observed (Zeki and Marini, 1998). Plotting parameter

estimates for these regions showed that this interaction was

driven by higher BOLD signals for those trials where participants

switched from one context to another (Figure 3C). However, we

interpret these results with caution, because they failed to reach

the threshold required for correction using an FDR threshold.

Finally, we also observed strong activations in the parietal cortex

that predicted whether participants switched direction or not (left

peak: �38, �32, 46; t19 = 10.8, p < 0.000000001 and right peak:

54, �24, 34; t19 = 8.39, p < 0.0000001; Figure 3D).

Encoding of Current Context
To execute a hierarchical plan, an agent must be able to identify

and represent the current context, in addition to the current

state (i.e., on the London Underground, to know that one is on

the Victoria Line, not just that one is at Green Park station).

We thus used a multivariate analysis technique known as repre-

sentational similarity analysis (RSA) to identify brain regions in

which the patterns of BOLD signal over voxels was more similar

across runs within a single subway line than between two
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different lines (using unsmoothed data; see Experimental Proce-

dures for details; Figure 4A). In the scanner, no indication

was given as to the subway line currently being visited, and so

any significant voxels must reflect an abstract encoding of

the context from memory. In conjunction with a whole-brain

‘‘searchlight’’ approach, this analysis once again identified the

dmPFC as a region where the current context was represented

(peak �10, 8, 54; t19 = 7.49, p < 0.000001; Figure 4B). No evi-

dence for context encoding in the PMC was found, although

evidence was found in other regions, including more anterior

portions of the PFC in BA9 (left peak: �30, 44, 34; t19 = 5.32,

p < 0.0001 and right peak: 34, 44, 30; t19 = 4.9, p < 0.001).

The analyses above indicated that the dmPFC encodes dis-

tance to goal in units of lines and U-turns. It could be, thus,

that the pattern encoding of this quantitymay depend on the cur-

rent line, providing evidence for a distinct computational cost

within each context. We thus repeated our RSA, but using not

the raw BOLD signal observed at each station, but the para-

metric encoding of distance to goal (in stations). The pattern of

encoding of distance to goal was also more similar within lines

than it was between lines in the dmPFC (2, 20, 54; t19 = 5.38,

p < 0.0001); it is shown in Figure 4C.

RSA can yield spurious results when trials assigned to each

category are not fully temporally decorrelated, and so we con-

ducted this analysis between runs (e.g., measured the similarity

between line a on run1 and line b on run 2). We additionally con-

ducted a control analysis in which the assignments between sta-

tions and lines were shuffled; this yielded no significant results

(Figure 4D).

Finally, subway lines contained long straight sections, and so

we were concerned that RSA of context might have captured

similarity associated with travel in a common direction, unrelated

to context per se. To test this, we conducted another RSA using

the same approach, but searched for regions where multivoxel



patterns weremore similar within than between directions (north,

south, east, and west). No activations were observed in the

medial PFC, but a large cluster of significant voxels was found

in the left motor cortex (Figure S2).

DISCUSSION

The behavior of humans and other animals is controlled at

least in part by a ‘‘model-based’’ control system that learns

the structure of the world and organizes sequential behavior

in pursuit of future goals (Daw et al., 2005; Dickinson and Bal-

leine, 2002; Dolan and Dayan, 2013; Schoenbaum et al.,

2009; Tolman, 1948). Recent work has begun to address

the neural and computational substrates underlying the

model-based decision-making by constructing ‘‘two-step’’

decision tasks in which cached state-action values and

explicit forward search strategies make opposing predictions

about behavior and brain activity (Daw et al., 2011; Gläscher

et al., 2010; Wunderlich et al., 2012). However, these studies

sidestep one key theoretical challenge associated with model-

based approaches, namely, how to organize behavior over

multiple future states without incurring a prohibitive computa-

tional cost. Human cognition has evolved to meet this chal-

lenge, as exemplified by our ability to form and follow plans

over multiple timescales, for example when finding an efficient

route to run a series of errands, or envisaging a future career

path and taking steps toward its fulfillment. Although we have

known for decades that planning involves the PFC, to date,

very little has been revealed about the computational mecha-

nisms that unfold in these regions during plan formation and

execution.

Here, we drew upon a framework that has its roots in cognitive

psychology (Miller et al., 1960; Norman and Shallice, 1986), but

has most recently inspired advances in machine intelligence

(Botvinick et al., 2009; Ponsen et al., 2010). This framework pro-

poses that the space of possible states can be organized and

represented hierarchically as a series of clusters or contexts,

reducing plan complexity (description length), and affording sub-

stantive increases in computational efficiency both at the time of

plan formation and plan execution. In the current study, we

tested a prediction arising from this hypothesis: that when plan-

ning in a complex environment, the cost of representing a plan

will be expressed in units of context (or context switch) over

and above any cost that is incurred in units of states themselves.

Our key finding is that both RTs and neural activity in the caudal

frontal cortex encode the cost of representing a hierarchical

plan, indicating that they participate in the hierarchical organiza-

tion of future behavior.

The neural costs observed were identified in two frontal re-

gions: a dmPFC region, falling in the presupplementary motor

cortex, that is often found to be sensitive to the difficulty (or con-

flict) incurredwhenmaking a choice (Botvinick et al., 1999), and a

lateral frontal that straddles the border between the premotor

and prefrontal cortices, in BA6/BA8. Both regions were also

active when participants were faced with the opportunity to

switch context, at an exchange station or bottleneck, consistent

with the finding that the dmPFC responds to subgoal attainment

(Ribas-Fernandes et al., 2011). However, across the participant
cohort, we observed reliable brain-behavior correlations in only

the dmPFC, but not the PMC. In the dmPFC, the strength with

which BOLD signals encoded distance to goal in units both of

stations and contexts for a given subject predicted his or her cor-

responding RT cost for those plan complexity measures. We

also found that the multivariate pattern of information in the

dmPFC (but not PMC) was sufficient to distinguish among con-

texts, even though the line that was currently visited was never

explicitly displayed to participants during the scanning phase.

Moreover, we were also able to distinguish context-specific rep-

resentations of distance to goal in the dmPFC, as if the region en-

coded separate costs of planning for each individual context.

One interpretation of this finding is that the dmPFC is responsible

for the translating of a plan into behavior, whereas the PMC par-

ticipates in maintaining the active plan over the journey. How-

ever, we note that those participants showing the strongest flat

cost in behavior also showed stronger encoding of this cost

in dmPFC neural signals. It may be, thus, that there are some

individual differences in the way that dmPFC contributes to

computing the cost of planning.

More generally, our findings are consistent with the view that

the dmPFC encodes a motivational signal that is extended

over time (Summerfield and Koechlin, 2009) and the comple-

mentary perspective that the dmPFC encodes ‘‘option’’ values

under the framework of hierarchical reinforcement learning (Hol-

royd and Yeung, 2012). As part of a general role in monitoring the

expected value of controlled behavior (Shenhav et al., 2013), the

dmPFCmay thus encode both the identity and value of a contex-

tual variable over which a particular policy applies, for example,

when foraging from different patches (Hayden et al., 2011; Kol-

ling et al., 2012).

The lateral region overlaps with the superior aspect of the

caudal dorsolateral PFC identified by Koechlin et al. (2003) as

active when actions are selected on the basis of contextual infor-

mation. The same region is labeled ‘‘pre-PMd’’ by Badre et al.

(2010), who found that this region is active when action selection

is contingent on a hierarchy of contingencies, rather than a flat

series of sensorimotor associations. In this region (as in behavior

and the dmPFC signal), the BOLD signal scaled with distance to

the destination station in units of context (i.e., lines), but not the

metric provided by individual states (i.e., stations). Notably, no

such effect was observed in more rostral regions that have pre-

viously been implicated in representing plan complexity in multi-

step problems such as the Tower of London task (van den Heu-

vel et al., 2003; Wagner et al., 2006). At first glance this finding is

surprising, one might have expected more anterior regions to be

responsible for representing the higher hierarchical aspects of a

complex plan. However, one explanation for this finding is that

during hierarchical planning, potentially complex action se-

quences are ‘‘compressed’’ to a small number of steps (e.g.,

contexts and context switches) that can then be represented in

subsidiary prefrontal regions located more caudally (Koechlin

and Summerfield, 2007).

Interestingly, the cost of representing a plan was incurred in

units of context, but not in units of response switch. This explains

the previous finding that humans seek to reach a new context

earlier rather than later during navigation, as doing so reduces

the computational burden of plan representations (Wiener and
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Mallot, 2003). This result additionally suggests that the hierarchi-

cal representation of the plan is encoded in terms of its abstract

structure, rather than as a succession of macro-actions (e.g.,

‘‘go straight, then go left’’). Nor was the plan encoded in terms

of the number of choice points, suggesting that the state space

is not chunked purely on the basis of its physical properties (e.g.,

in terms of segments between choice points), but in a fashion

that reflected the more abstract structure that they were encour-

aged to learn during training. What remains unclear, however, is

whether context is represented as a cluster of interlinked

perceptual states (i.e., stations on the yellow line), or as a series

of macro-policies that dictate pursuit of a goal (e.g., keep going

straight on until you reach a given switch point). A hint that

participants relied on perceptual representation of context was

provided by the finding that voxels in area V4 became active at

context switches, as if participants were recalling the color of

the new subway line (which was not shown to them during

scanning). However, the precise nature of the information that

characterizes a context remains an open question. For example,

participants might have used information about the spatial orga-

nization of the map (the blue line runs from north to south or the

red line is north of the green line).

Moreover, both behavior and the PMC also encoded an addi-

tional ‘‘U-turn’’ cost, that indexed the extent to which plans

involved doubling back toward the current location along a

different line. In the planning literature, it has been noted

that goal-subgoal conflict—for example, the need to temporarily

remove one disc from a peg and subsequently replace it in

the Tower of London task—incurs a unique RT cost (Ward and

Allport, 1997) and poses a particular problem for patients

with lateral prefrontal lesions (Morris et al., 1997). Consistent

with this finding, U-turn costs were visible not only in the PMC,

but also in lateral prefrontal regions. The existence of a unique

U-turn cost in our navigation task demonstrates that participants

not only encoded plans in the subway network as a hierarchical

series of contexts, but also in terms of the geometry of the map

that they saw in the training session.

Although the costs of representing a flat plan were minimal

once variance associated with a hierarchical plan had been par-

tialled out, there was one brain region where strong (positive)

covariation with number of stations to goal was observed, the

vmPFC. Previous theories have speculated that the vmPFC

may be among a set of regions that tracks distance to a goal

state (Holroyd and Yeung, 2012) and, indeed, the vmPFC is

implicated in episodic future thinking (Schacter and Addis,

2007), and has been found to track growing expected reward

in decision tasks involving sequential, interdependent choices

(Tsetsos et al., 2014). The hippocampus has also previously

been found to covary with proximity to goal, but only in virtual re-

ality environments that mimic much more closely the naturalistic

experience of navigation (Howard et al., 2014; Viard et al., 2011).

Here, we show that the distance to goal representation is present

evenwhen current and goal state information is devoid of the rich

episodic cues that we normally use to navigate. Critically, how-

ever, the hippocampus and vmPFC showed no evidence of a hi-

erarchical signal.

Our analyses focused on the cost of ‘‘representing’’ a hierar-

chical (or flat plan) as participants navigated through the
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network. This is a general index of the cost involved in maintain-

ing and monitoring the plan, rather than of recursively searching

through all possible nodes of the decision tree (for example, via a

breadth- or depth-first algorithm) or ‘‘pruning’’ of unpromising

routes to a goal (Huys et al., 2012, 2015). While plan formation

may have occurred mainly on presentation of the cue screen

stating the start and goal stations, plans may also have been

constantly updated and reformed during execution (‘‘replan-

ning’’). Indeed, as distance to goal grows, the processing cost

of these search operations will grow correspondingly. However,

it is not clear that this cost would grow linearly with the number of

states or contexts that must be traversed to reach a goal. One

limitation of the approach taken here is that we do not have an

obviousmeans to assess how plans are formed prior to or during

navigation or to distinguish the neural mechanisms that accom-

pany plan maintenance and monitoring from any replanning that

may be occurring. We did examine BOLD signals evoked in

response to the cue screen, but they did not show convincing

correlations with the various distance metrics or predict the

journeys that participants would follow. However, it is unclear

whether this null finding is due to a lack of statistical power,

owing to the limited number of such trials. Examining the costs

incurred at the time of plan formation would be an interesting

avenue of research for future studies.

EXPERIMENTAL PROCEDURES

Subjects

A total of 22 healthy participants (10 female and 12male; age 19–34,mean 25.6

years; one was the first author of the study) were recruited into the study in

accordance with local ethical guidelines. No participants reported a history

of psychiatric or neurological illness, and all had normal or corrected-to-

normal vision. Participants were paid £35 for participation in both a practice

and a scanner session on two separate days. A monetary incentive of up to

£10, proportional to performance, was added to the previous amount. There

were two participants that were excluded due to poor performance on the

task (more than 20% of the journeys included a move in the wrong direction

during the main experiment).

Stimuli and Task Design

The same subway map was used for all participants, but the names of the sta-

tions and the colors of the lines were randomly shuffled, and the map was

randomly rotated by 0�, 90�, 180�, or 270� (example shown in Figure 1B).

Following training (see below), participants performed the main task, which

involved navigating in a virtual subway environment, in the MRI scanner. Each

journey involved a start station and a destination station that were randomly

selected with the constraint that the journey would require at least one change

of line (17.8% of journeys) or one change of direction without changing lines

(10.7%) or both (71.5%). Participants navigated through the subway map by

pressing buttons (see below). On each trial, there was a constant probability

that the journey was cancelled, engineered such that cancellation probability

was independent of the length of the optimal journey and led to approximately

50% of journeys being cancelled; cancellation probability was independent of

the hierarchical aspects of the task. Overall, 52.9% of journeys were success-

fully completed. Each journey was rewarded with a monetary value (either one

or five virtual coins, signaled during navigation), whichwere converted to real in-

centives (normalized to a maximum of £10) that were paid out as a bonus at the

end of the experiment. Behavioral performance did not differ as a function of the

incentives offered, so we collapsed over this factor for all analyses.

Procedure

The main task is depicted in Figure 1C. Each journey began with the presenta-

tion of a cue screen for 3 s that indicated the starting point and the destination



(stations and lines). After a period of 2–5 s (jittered) of blank screen, on each of

the successive trials a navigation screen was displayed for 3 s. This screen

provided multiple pieces of information: the names of the current and destina-

tion stations; the line color of the destination station; the reward at stake for the

current journey; the cumulative reward so far; and the cardinal directions

(north, south, east, and west) available from the current station. Critically, no

information about the current line or about the line associated with each action

was shown. At each step, participants had to choose the direction theywanted

to take by pressing one out of four buttons. If no key was pressed, the same

station was shown again in the next step. Each navigation screen was followed

by a blank screen of 1–3 s (jittered); no feedback was provided during

navigation.

The journey ended either when the participant reached the destination or

when the journey was cancelled. After the journey was finished or cancelled,

a feedback screen informed whether the destination had been reached or

not and the reward that had been obtained. This screen was displayed for

2 s and was followed by a blank screen of 2–5 s (jittered) before the next

cue screen occurred. Participants completed as many journeys as possible

in four successive runs buttressed by lead-in and lead-out durations of 10 s

and 5 s, respectively. The total scanning time, including anatomical and local-

izer scans, was around 75 min per participant.

Training Task

All participants were trained in a separate behavioral session that took place

outside the scanner exactly 2 days before the main experimental task. This

training session was similar to the main task, with the following exceptions.

First, the map (e.g., Figure 1B) was shown for 10 s prior to the start of each

journey. Second, participants were allowed unlimited time to respond, moving

on to the next screen only after a key press had been initiated. Third, the avail-

able actions were shown in the color of the corresponding line, and a picture

matching the name of each station was displayed consistently in the back-

ground to facilitate the learning of the map. An additional key press (space

bar)was required to switch between lines and, during a line switch, an animated

clock was shown on screen and a delay of 1 s was imposed. On each journey,

the starting and destination stations were selected uniformly, permitting a

larger number of possible journeys and, at the end of each journey, a feedback

screen informed the participant of (1) the total length of the journey and (2) the

minimum length that couldhavebeenbeachieved (i.ewhether their journeyhad

been optimal or not). During training, journeys were never cancelled and no

monetary outcomes were associated with successful journeys. Lastly, we

introduced ten ‘‘quizzes’’ at homogeneous times during the training session

(always between journeys), each including ten ‘‘questions’’ where the current

station and the goal were cued, but participants were only required to respond

to the first step toward the goal. Participants were informed of the scores

obtained at the end of each quiz and were instructed to learn during the whole

session as to maximize their scores during the quiz. They completed as many

journeys as possible over a period of 45 min.

On the day of scanning, before entering the MRI, participants performed a

practice block identical to one of the main task scanner runs. They were al-

lowed to see themap one last time before the beginning of this second training

session. Data from this session were not included in the analyses.

fMRI Acquisition

Magnetic resonance images were acquired with a 3T Siemens VERIO scanner

with a 32-channel head coil using a standard echo-planar imaging sequence.

Whole-head T2*-weighted echo-planar images were continuously acquired

with a repetition time of 2 s, echo time of 30 ms. We acquired fMRI data in

four runs (�17 min each) of between 456 and 510 volumes, plus three dummy

scans discarded before the analyses. For technical reasons, three participants

completed only three runs. Each volume included 64 3 643 36 voxels of 3 3

3 3 3 mm. A high-resolution T1-weighted structural image was also obtained

(voxel size = 13 13 1 mm). For standard preprocessing and univariate statis-

tical analyses, we usedSPM12 (WellcomeDepartment of Cognitive Neurology,

London, United Kingdom). All other analyses were carried out with custom

scripts for Matlab (Mathworks). We also used XjView (http://www.alivelearn.

net/xjview) to visualize the data and to construct mask images and impose

an FDR correction for multiple comparisons (Genovese et al., 2002). For each
participant, we first realigned all functional images, thenwe co-registered (rigid

body transformation) the anatomical scan to the mean functional image. We

then segmented each subject’s co-registered anatomical scan, using

segmented probabilistic maps for gray matter, white matter, cerebro-spinal

fluid, bone, soft tissue, and air/background in the Montreal Neurological Insti-

tute (MNI) space. The parameters obtained were applied to normalize the sub-

ject’s functional scans to the template brain MNI space. Functional images

were resampled (33333mmvoxels) and spatially smoothed (6-mm full-width

half-maximum [FWHM] Gaussian kernel). For all analyses, a 128 s temporal

high-pass filter was applied to remove low-frequency scanner artifacts. Tem-

poral autocorrelation in the time series data was estimated using restricted

maximum-likelihood estimates of variance components using a first-order au-

toregressive model (AR-1), and the resulting non-sphericity was used to form

maximum-likelihood estimates of the activations, consistent with standard ap-

proaches in SPM (Penny et al., 2006).

Behavioral Analyses

We analyzed log reaction times with linear regression as described in the main

text and the significant contribution of each regressor was validated through a

t test using an alpha of p < 0.05. All regressors and interactions were Z scored

before being introduced in the regression. The optimal path was obtained

through a generalized version of the Dijkstra algorithm that minimized multiple

distances, by priority: in number of stations, number of response switches, and

number of exchange stations. The U-turn cost was defined as the signed dif-

ference between the distance in number of stations and the Manhattan (city-

block) distance: DU(a,b) = DS(a,b) � jxa � xbj � jya � ybj, where (xi,yi) are the

geometrical coordinates of a station i, j$j is the absolute value operator, and

DS is the distance in number of stations. An illustration of how the various

indices of distance to goal were computed is shown in Figure 1D. The original

Dijkstra algorithm was based on in-house code.

Univariate Analyses of Functional Data

All univariate analyses were based on a generalized linear model (GLM)

approach. Our GLM included regressors coding for onsets and durations of

stimuli or events, which were then convolved with the canonical haemody-

namic response function (HRF) and regressed against the observed fMRI

data. Scanner runs were concatenated for univariate analyses, and constant

terms for each run were included manually. Additionally, motion parameters

and the average signal outside of the brain were included as nuisance vari-

ables for all GLMs. Group-level statistics were estimated from the individual

b patterns, not the within-subject statistics.

The main analyses described in the paper were based on two GLMs. Unless

otherwise specified, we only considered journeys where the participant always

moved toward the goal (‘‘optimal’’ journeys), but other journeys were modeled

separately. GLM1 included the following conditions convolved with the canon-

ical HRF basis function: main effect of cue screen; main effect of feedback

screen; and main effect of navigation screen for suboptimal journeys. We

modeled navigation screens during optimal journeys independently for (1)

line changes, (2) exchange stations without a line change, (3) elbow stations,

and (4) regular stations without response switch. Additionally, we included

the following parametric modulators for regular stations without response

switch: distance to goal in number of stations (DS); distance to goal in number

of line changes (DL); distance to goal in number of exchange stations (DX); and

theU-turn cost (DU). GLM2 included the following conditions:main effect of cue

screen; main effect of feedback screen; and main effect of navigation screen.

Additionally, the navigation screen included the following parametric modula-

tors: typeof station (exchange > regular); type of response (switch> stay); inter-

action between station and response; distance to goal in number of stations

(DS); and performance on the current step (1 if optimal and �1 otherwise).

All effects reported survived FDR correction for multiple comparisons, un-

less noted in the main text. Images and tables are thresholded at p < 0.001,

unless otherwise noted. All the analyses described here focused on effects

during the time of navigation. Peak activations are reportedwith the coordinate

system of the MNI template brain. Regions of interest (ROI) were defined by

manually selecting clusters under a threshold of p < 0.001 uncorrected.

The mask in rlPFC was extracted from a main effect of distance to goal in

GLM2.
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BOLD-RT Correlation Analysis

Weextracted the average beta obtained fromGLM1, andwe obtained average

values for dmPFC and PMC. We also obtained similar beta values of effect of

DS and DL in explaining log-reaction times (see Experimental Procedures,

Behavioral Analyses). We then performed a non-parametric Spearman corre-

lation across participants for each region and type of distance.

Single-Trial GLM Approach

We performed a single-trial analysis in order to extract the average signal in

PMC before and after a line change, an elbow station, an exchange station

without response switch (i.e., a line stay), or a regular station without

response switch. First, we constructed a design matrix in which each trial

was modeled with a unique regressor. From this, we obtained a single sca-

lar BOLD estimate for each voxel on each trial. We then averaged these

values within the PMC region for each station type. To avoid double dip-

ping, our ROI was defined based on orthogonal contrast of type of station

(exchange > regular) from GLM2 (p < 0.001 uncorrected). Second, we aver-

aged the PMC signal for the neighboring trials around each condition (i.e.,

line change, elbow station, line stay, and regular station) within the journey.

Critically, we restricted these neighboring trials only to regular stations

without response switch.

Our prediction was that the BOLD signal in PMC would be higher before a

line change than after, but that this difference would not be reflected around

elbow stations or exchange stations without a line change. We calculated

the difference on the trials immediately before/after each condition and per-

formed a statistical analysis on the main effects of type of station and type

of response on this difference. For better visualization, we controlled for be-

tween-subject variability in Figure 3A, where we displayed the activity in

PMC of all other conditions relative to the average signal in regular stations

without response switch.

Representation Similarity Analysis

For representation similarity analysis (RSA), we constructed a new GLM with

four regressors (per scanner run) that each encoded regular stations (without

a response switch) corresponding to one subway line (context regressors),

and four further parametric regressors that modulated each event by dis-

tance to goal (in number of stations; context distance regressors). We

used unsmoothed images for this analysis. Additional regressors encoded

other quantities (cue screen; feedback screen; in navigation: line changes,

‘‘elbow’’ stations, and exchange stations without a line change; and nuisance

regressors). We used a searchlight approach, in which a sphere of 15 mm

radius was moved progressively over the brain volume, with the resulting

RSA estimates allocated to the centroid voxel for localization and display.

Results obtained with a smaller radius (10 mm) were qualitatively very similar.

For context decoding (Figure 4B), we estimated for each scanner run (n = 4)

the pattern of resulting betas for each of the four context regressors and

computed their correlation distance (1-Pearson correlation) yielding a 16 3

16 neural dissimilarity matrix. This matrix was regressed against the pre-

dicted representation dissimilarity matrix (RDM) shown in Figure 4A within

each searchlight and statistics performed on the resulting betas at the sec-

ond (between-subject) level. In the predicted RDM, distances were greater

between lines than within lines. We excluded comparisons within a single

run, to control temporal autocorrelation in the within-session BOLD signal.

An identical approach was used for the context distance regressors (Fig-

ure 4C). In the control condition (Figure 4D), the assignment of regular and

elbow stations to each line was shuffled, so that the hierarchical structure

was lost. We then repeated the estimation of beta patterns and the search-

light RSA approach as above.
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